International Day of Biological Diversity: Celebrating the great research from the Interdisciplinary Centre for Conservation Science

Happy International Day of Biological Diversity! I am a lucky conservation scientist who is working at the Interdisciplinary Centre for Conservation Science at the University of Oxford. I spend a lot of time working with business and government decision-makers to help them understand and manage environmental impacts, by using conservation science. This is all done with my ultimate aim of helping to balance sustainable development with the conservation of biodiversity.

ICCS members and colleagues at the 2016 Interdisciplinary Conservation Network workshop at the University of Oxford. Including featured authors: Sam Lloyd, Joe Bull, and E.J. Milner-Gulland.
To celebrate International day of Biological Diversity, I thought I’d highlight some of the amazing ICCS research that focuses on dealing with uncertainty in understanding and managing nature. These are just a few papers from this year that I think are critically relevant to ongoing work to conserve biodiversity:

E.J. Milner-Gulland: embracing uncertainty in environmental monitoring and management

E.J. and Katriona Shea recently provided a great commentary on how applied ecologists and conservation scientists can and should embrace uncertainty. They used some neat conservation examples from around the world to illustrate some of the common traps that applied ecologists can fall into. These include ignoring uncertainty all together, putting too much faith in their models, and failing to set clear objectives for monitoring and management. To overcome these uncertainty traps they point to a range of practical approaches to help practitioners, such as: using decision theory to frame the purpose of ecological monitoring and management more carefully, using virtual experiments to explore critical uncertainties prior to undertaking monitoring and management, and using a wider suite of models that account for uncertainty.

This paper is really relevant for conservation scientists developing models and helping support conservation decision-making. You can read their paper here.

Mike Burgass: navigating uncertainty in composite indicators

Mike and his co-authors (Ben Halpern, Emily Nicholson, and E.J. Milner-Gulland) undertook a comprehensive review of the use of composite indicators that are used to measure and track environmental systems (just like the Ocean Health Index, which is used to measure how healthy our oceans are around the world). They illustrated how uncertainty can creep into composite indicators in many different ways. There is the uncertainty associated with the monitoring data used to inform an indicator value, the construction of composite indicators (aggregating lots of individual indicators), and in post-development in the way that composite indicators are communicated. They provide a suite of solutions to help address uncertainty in composite indicators to ensure they can be used more confidently in environmental management.

This paper is really relevant for conservation scientists developing composite indicators for applied purposes. This is also incredibly relevant to businesses seeking to develop biodiversity metrics, which will often end up being a composite metric of multiple attributes of biodiversity (e.g., combining species and ecosystem information). You can read their paper here.

Joe Bull and Sam Lloyd: uncertainty and multipliers in sustainable development

In the world of sustainable development, goals like ‘no net loss’ and ‘net gain’ of biodiversity are being set to ensure that biodiversity losses from development are compensated with gains through the application of the mitigation hierarchy. To deal with uncertainty (e.g., in natural systems, and the data and models used to estimate biodiversity gains and losses), multipliers are used in the calculation of biodiversity mitigation measures. The more uncertain the ecological outcome, the greater the multiplier, and thus the greater the mitigation measure should be. In their review paper, Joe, Sam and their colleague Neils Strange explore the gap that exists between the theory of how multipliers should be used and what the reality is in practice. Multiplier values should theoretically be set at the tens or hundreds when considering ecological uncertainties. But multipliers used in offset and biodiversity policies and projects around the world are often less than ten. Joe and his colleagues recommend that there will be many occasions where larger multipliers should be used in practice, and these relate not only to ecological considerations, but also social, ethical and governance considerations.

This paper is relevant to all businesses considering commitments like ‘no net loss’ and ‘net gain’ of biodiversity, as it explains how uncertainty in natural systems is commonly underestimated. If uncertainty is not addressed systematically by practitioners and businesses implementing biodiversity ‘no net loss’ and ‘net gain’ projects then there will be a substantial undermining of biodiversity conservation efforts globally. You can read their paper here.

Papers cited in this blog:

Bull, J.W., Lloyd, S.P., Strange, N. (2017) Implementation gap between the theory and practice of biodiversity offset multipliers. Conservation Letters, DOI: 10.1111/conl.12335

Burgass, M., Halpern, B., Nicholson, E., Milner-Gulland, E.J. (2017) Exposing and navigating uncertainty in composite indicators. Ecological Indicators, 75, 268-278

Milner-Gulland, E. J. and Shea, K. (2017), Embracing uncertainty in applied ecology. Journal of Applied Ecology. doi:10.1111/1365-2664.12887

What needs to change to undertake quantitative assessment of biodiversity outcomes in protected areas

I am very happy to announce the final paper from my PhD has now been published!

Screen Shot 2017-05-04 at 08.29.41

Here is a brief outline of the paper:

Protected area management effectiveness (PAME) evaluation is increasingly undertaken to evaluate governance, assess conservation outcomes and inform evidence-based management of protected areas (PAs). Within PAME, quantitative approaches to assess biodiversity outcomes are now emerging, where biological monitoring data are directly assessed against quantitative (numerically defined) condition categories (termed quantitative condition assessments). However, more commonly qualitative condition assessments are employed in PAME, which use descriptive condition categories and are evaluated largely with expert judgement that can be subject to a range of biases, such as linguistic uncertainty and overconfidence.

Despite the benefits of increased transparency and repeatability of evaluations, quantitative condition assessments are rarely used in PAME. To understand why, we interviewed practitioners from all Australian marine protected area (MPA) networks, which have access to long-term biological monitoring data and are developing or conducting PAME evaluations.

Our research revealed that there is a desire within management agencies to implement quantitative condition assessment of biodiversity outcomes in Australian MPAs. However, practitioners report many challenges in transitioning from undertaking qualitative to quantitative condition assessments of biodiversity outcomes, which are hampering progress. Challenges include a lack of agency capacity (staff numbers and money), knowledge gaps, and diminishing public and political support for PAs. We point to opportunities to target strategies that will assist agencies overcome these challenges, including new decision support tools, approaches to better finance conservation efforts, and to promote more management relevant science.

Please follow this open access link to access this paper:

If you’d like to see some of my other PhD research, please click the links below:

Addison P.F.E., Flander L.B., Cook C.N. (2017) Towards quantitative condition assessment of biodiversity outcomes: insights from Australian marine protected areas. Journal of Environmental Management. 198, 183–191.

Addison, P.F.E., Flander, L. B., Cook, C.N. (2015) Are we missing the boat? Current uses of long-term biological monitoring data in the evaluation and management of marine protected areas. Journal of Environmental Management. 149, 148–156.

Addison, P.F.E, de Bie, K., Rumpff, L. (2015) Setting conservation management thresholds using a novel participatory modelling approach. Conservation Biology, 29, 1411–1422.

Addison, P. F. E., Rumpff, L., Bau, S. S., Carey, J. M., Chee, Y. E., Jarrad, F., McBride, M. F., and Burgman, M. A. (2013). Practical solutions for making models indispensable in conservation decision-making. Diversity and Distributions. Special issue on: Perspectives and tools for conservation risk analysis.  19, 490–502.

Early career research & conservation impact

I recently wrote a blog on the ICCS research website about early career research & conservation impact. This was inspired by my current work as a NERC Knowledge Exchange fellow, my passion for working in the knowledge exchange space and applying conservation science to achieve real impact. In my blog I point out some handy online resources that will help early career researchers get started on their own pathway to research impact. You can read the full blog here.

Research Councils UK Pathways to Impact

Knowledge Exchange – creating a pathway to impact (source: Research Councils UK word cloud of Pathways to Impact)


New insights from conservation practitioners on decision triggers for evidence-based management of natural systems

Many conservation organisations are striving to undertake evidence-based management to help guide effective management of natural systems. This is where the best available evidence, like ecological research or monitoring data, are used to support management decisions. An important feature of evidence-based management is that it can assist conservation practitioners in making often difficult decisions about when to intervene in a system to prevent undesirable changes.

Decision triggers represent a point or zone in the status of a monitored variable indicating when management intervention is required to address undesirable ecosystem changes (Figure 1).

Figure 1_final
Figure 1: Decision triggers (horizontal dashed lines) representing a target for management intervention.

Decision triggers have received increasing attention from the scientific community, who have suggested that they facilitate more proactive and transparent management of ecosystems (see our paper in Biological Conservation for these academic perspectives). From a management perspective, decision triggers offer conservation practitioners greater clarity about when and where to intervene in a system. However, there has been little consideration of whether practitioners in management organisations support the adoption of, or even use of decision triggers in practice.

In our recent paper in the Journal of Applied Ecology, we share the perspectives of conservation practitioners from protected area management organisations in Australia and New Zealand, on the progress towards using of decision triggers for protected area management.

It turns out that there are a wide range of organisational motivations for developing and using decision triggers, which go well beyond the desire to prevent negative conservation outcomes (Figure 2). Other important motivations for developing and using decision triggers include: supporting decision-making by providing clarity about when and how to act, improving transparency of organizational decisions, removing the need for guess work, and guarding against the paralysing effects of uncertainty.

Figure 2_colour_Page_1
Figure 2: The motivations for organisations developing and using decision triggers, ordered from most to least frequently cited by the Australian and New Zealand organisations.

Support for a decision triggers approach has manifested as ad hoc examples, but only for well-understood threats or controversial management issues. For example, to manage significant threats to biodiversity (e.g., fire or invasive species management), setting quotas for harvesting or controlling native species, and determining when to remove threatened populations from the wild.

The practitioners in our study shared their views on the operational barriers (issues within the organisations) and scientific knowledge gaps (lack of knowledge or techniques) impeding the development and implementation of decision triggers. Practitioners revealed that most organisations are facing similar challenges (e.g., insufficient resources and the lack of a process and methods for developing decision triggers across different contexts), which is hampering the routine use of decision triggers. Gaps in our scientific understanding were also seen as a major issue impeding the adoption of decision trigger (e.g., uncertainties around ecological processes, and a lack of targeted, robust and reliable baseline monitoring data).

Practitioners are keen to adopt decision triggers as part of routine management for a range of threats, species and ecosystems. However, integrating decision triggers into day-to-day management requires methods that can be widely applied. Practitioners were very clear that they would appreciate support from the academic community to overcome the barriers they face.

Practitioners are calling for an overarching process and supporting methods to develop decision triggers. A key recommendation from our study is that guidance on how to develop decision triggers is required. An essential element of any guidance will be flexibility, such that decision triggers can be developed for different management contexts, rather than prescribing a one-size-fits-all approach. In fact, we believe that many critical steps needed for developing decision triggers already exist in most evidence-based management frameworks already used by conservation organisations. You can read about our full set of recommendations here.

Achieving the potential of decision triggers to support evidence-based conservation will require collaboration between conservation practitioners and scientists to demonstrate a flexible approach that can be applied within existing evidence-based management frameworks across different management contexts.

We are currently developing detailed guidance to provide practitioners with a clear understanding of how to integrate decision triggers within their organisations’ frameworks. This approach will be tested through a series of case studies to illustrate how decision triggers can be applied to managing species, ecosystems and threatening processes. If you would like to find out more about our upcoming research, please contact Carly Cook.

This blog post was written by Prue Addison, Kelly de Bie, and Carly Cook.

Knowledge Exchange @ ICCS

1 KE at ICCS header image

I have recently joined the ICCS team at the University of Oxford as a NERC Knowledge Exchange Fellow. Through Knowledge Exchange @ ICCS, we will bring cutting edge research to industry, to help businesses measure, evaluate and report on corporate biodiversity performance.

From 2016 to 2019 I will be working closely with Knowledge Exchange @ ICCS business partners (BP, Sainsbury’s and Kering) who are currently developing and implementing their own corporate biodiversity strategies. We will be developing pragmatic solutions that incorporate cutting edge conservation research to help to address the challenges that these businesses face in incorporating biodiversity into their business.

Please see our latest information sheet to find out more about Knowledge Exchange @ ICCS. You can also find out more on the ICCS website.

Valuing Nature Business Impact School – bringing scientists and businesses together

Recently I had the unique opportunity to attend the Valuing Nature Business Impact School in London. The school brought together early career scientists and business representatives, who share a common interest in valuing nature both for its’ intrinsic environmental value and to understand its’ benefits to business, government and broader society.

The school was run by the Valuing Nature Programme and was held in two contrasting venues: in the heart of London’s business district, and in Windsor Great Park. These settings stimulated some great discussion around how scientists and businesses can work together to effectively value nature, through approaches such as estimating ecosystem services, biodiversity and natural capital. There is a great Storify blog that summarises a lively Twitter discussion during the school.

The Valuing Nature Business Impact School’s contrasting venues: the heart of London’s business district (the view from Willis Towers Watson building) and Windsor Great Park.

Having recently commenced a NERC knowledge exchange fellowship working with businesses on their corporate biodiversity strategies, the school was a perfect forum for me to learn from other scientists and businesses working in this field. There are so many things I learnt from the Business Impact School, but here are the top four lessons that resonated with me:

1) Why scientists value nature

In his welcoming speech, Michael Winter articulated why scientists should get involved in valuing nature. He summarised the negative response to valuing nature from parts of the scientific and conservation community, who claim that the scientists working in this area have ‘sold out’ to business. But the reality is that businesses and governments are keenly interested in pursuing ways to understand and value nature, and are pushing ahead with this agenda regardless of scientists’ involvement. By acknowledging this reality, scientists have an opportunity to work with business to develop evidence-based, scientifically rigorous approaches to improve the way that nature is valued by businesses. Why should scientists do this? So that we can factor the environment into effective decision-making in the future!

2) Why businesses value nature

As a conservation scientist who has recently begun working with businesses, it’s been a steep learning curve for me to understand what motivates businesses to value nature in the first place. Some interesting perspectives were shared at the school, and with some further reading I feel I’m starting to get my head around these motivations. At the end of the day businesses need to make a profit and a return for their owners/shareholders. So what financial benefits can businesses gain from working with nature? The World Resources Institute outline the financial incentives for businesses to work with nature as:

Operational – investing in environmental initiatives to support more efficient operations.

Regulatory & legal – demonstrating environmental leadership to influence the development of policies & regulations, that could in turn provide ecosystem services that a business relies on.

Reputational – communicate environmental initiatives for differentiation from competitors, and to connect with staff, shareholders, customers and broader society.

Market & product – brand differentiation, by offering eco-labelled products or more sustainable services to reduce environmental impacts.

Financing – gaining access to favorable loan terms from banks who support businesses engaged with positive environmental initiatives.

3) How can scientists work effectively with businesses to value nature?

One thing that struck me during the school is that many scientists are conducting research that could be really beneficial to businesses. But many scientists are yet to connect with specific individuals in businesses to ensure that their science is applied to address business needs. We discussed this briefly at the school, and that a vital initial step is to identify who are the ‘end users’ of your science in order to begin to work with businesses. Often we need to identify the champions within a business, who are passionate about the environment and your science, who can facilitate your research having a real impact in the business world. So how can scientists identify these businesses and individual champions?

Fortunately, Mark Reed and his colleagues have done a lot of research in this area, and have some great tips on the art of knowledge exchange and how to achieve impact in your research. He also has a great online online course available, which guides scientists through designing their research to achieve impact,  identifying the end users of research, and recommending ways to engage with these end users.

4) A top tip for communicating with business

Let’s face it, scientists have a pretty special way of communicating, which is full of technical jargon that often only other scientists can understand. Peter Young, the chair of Valuing Nature’s Business Interest Group, gave a very simple piece of advice for scientists wanting to communicate effectively with business: learn the language of business by looking at their websites. Just mirror their language back to them when explaining your science. Simple!

Thanks Valuing Nature Business Impact School!

I’d like to thank the Valuing Nature Programme for organising the Valuing Nature Business Impact School. This program offered fully funded places to 25 PhD and early career scientists, and was a fantastic learning and networking opportunity for all attendees. This was the first year of the school, and I’m sure there will be many great years of the school to come. For those early career scientists keen to join the next Business Impact School, you should join the Valuing Nature Network!

When to act? A new approach to set conservation management thresholds

Management thresholds are a useful tool to inform decision-makers when management intervention is required to address undesirable environmental changes. These tools have had widespread application in natural resource management like fisheries and water quality management, but less so in conservation.

My colleagues, Kelly de Bie and Libby Rumpff, and I found ourselves in need of an approach to develop conservation management thresholds for the following situation, where management thresholds: (1) must be set for environmental indicators in the face of multiple competing objectives; (2) need to incorporate scientific understanding and value judgments; and, (3) involve participants in the process with limited modelling experience. As no approaches existed to address our situation, we devised a new participatory modelling approach for setting management thresholds.

The approach that we devised follows the steps of structured decision-making, which is very useful in supporting multi-objective conservation decision-making. Structured decision-making also enables the incorporation of scientific knowledge and value judgments into decision-making, and promotes the involvement of decision makers, stakeholders, and experts (collectively participants) in the decision-making process. Our approach draws on a unique combination of modelling techniques within each step of structured decision-making, which have not been used to set conservation management thresholds to date (Figure 1).

The steps of the participatory modelling process and recommended techniques to set management thresholds.
Figure 1. The steps of the participatory modelling process and recommended techniques to set management thresholds.

In our recent Conservation Biology paper, we describe this participatory modelling approach to set management thresholds, and illustrate its application using a case study where management thresholds were set for a mat-forming brown alga, Hormosira banksii (Figure 2), in an Australian marine protected area.

Figure 2. A rocky intertidal reef in Victoria, Australia, with a close up of the brown alga, Hormosira banksii.
Figure 2. A rocky intertidal reef in Victoria, Australia, with a close up of the brown alga, Hormosira banksii.

Participants, including management staff and scientists, were involved in a workshop to test the approach, and set management thresholds to address the threat of trampling by visitors to an intertidal rocky reef. The approach involved trading off the environmental objective, to maintain the condition of intertidal reef communities, with social and economic objectives to ensure management intervention did not ruin visitor experience and was cost-effective.

Ecological scenarios, developed using scenario planning, were a key feature of this approach that provided the foundation for where to set management thresholds. The four scenarios developed represented the current condition, and plausible declines in percent cover of H. banksii that may occur under increased threatening processes in the future (Figure 3).

The ecological scenarios developed using scenario planning, representing the current condition (70% cover), and plausible declines in percent cover of H. banksii (42%, 30% and 15% cover) that may occur under increased threatening processes in the future. Monitoring data showing the current condition of H. banksii (solid black line: mean percentage cover [SE]) at the intertidal reef is also displayed.
Figure 3. The ecological scenarios developed using scenario planning, representing the current condition (70% cover), and plausible declines in percent cover of Hormosira (42%, 30% and 15% cover) that may occur under increased threatening processes in the future. Monitoring data showing the current condition of Hormosira (solid black line: mean percentage cover [SE]) at the intertidal reef is also displayed.
Participants defined four discrete management alternatives to address the threat of trampling and estimated the consequence of these alternatives on the objectives under each ecological scenario. A weighted additive model was used to aggregate participants’ consequence estimates. Model outputs (decision scores) clearly expressed uncertainty (Figure 4), which can be considered by decision- makers and used to inform where to set management thresholds (Figure 5).

Figure 4. The performance of the 4 management alternatives under the ecological scenarios representing the current condition (70% cover) and 3 plausible states of reduced cover of Hormosira (42%, 30%, and 15% cover).
Figure 4. The performance of the 4 management alternatives under the ecological scenarios representing the current condition (70% cover) and 3 plausible states of reduced cover of Hormosira (42%, 30%, and 15% cover).

Figure 5. The medium protection management threshold implementation range (amber shading) for Hormosira informed by decision scores in Figure 3. The current condition of Hormosira (solid black line: mean percentage cover [SE]) at the intertidal reef is shown from 2004 to 2013, and the ecological scenarios are represented by the four horizontal lines (as presented in Figure 2).
Figure 4. The medium protection management threshold implementation range (amber shading) for Hormosira informed by decision scores in Figure 3. The current condition of Hormosira (solid black line: mean percentage cover [SE]) at the intertidal reef is shown from 2004 to 2013, and the ecological scenarios are represented by the four horizontal lines (as presented in Figure 2).
Why set conservation management thresholds?

Setting management thresholds remains a challenging task in conservation. We believe this novel participatory modelling approach provides an accessible and effective method to set conservation management thresholds.

One single approach to setting management thresholds will not be suitable for all contexts, as conservation decisions often involve different circumstances that will require different modelling approaches. We propose this participatory modelling approach as one in a toolbox of available approaches to assist with setting management thresholds.

Most importantly this participatory modelling approach encourages a proactive form of conservation management, where management thresholds and associated management actions are defined a priori for ecological indictors, rather than reacting to unexpected future ecosystem changes.

Want to find out more about this research?

Please feel free to download our open access Conservation Biology paper.

For those attending the International Congress for Conservation Biology in Marseille, France, please come along to my presentation in the Adaptive Management and Monitoring session on Tuesday 4th of August, 8.30-10.00, room Sully 1.

Are we missing the boat? The current use of long-term monitoring data in marine protected area management

Long-term biological monitoring data are becoming increasingly available to inform conservation efforts internationally. These data are rich sources of scientific evidence that offer insights into the natural variability of ecosystems and species through time, as well revealing information about the effectiveness of conservation efforts. However, there are many occasions where long-term monitoring data, like other forms of scientific evidence, have been of little use to conservation.

My colleagues and I recently explored how long-term biological monitoring data are used to inform Australian marine protected area (MPA) management. We focussed on long-term monitoring programs from Australian MPAs, as these are some of the world’s longest running monitoring programs, significantly contributing to the scientific understanding of the biological effects of MPA protection. These monitoring programs also represent rich data sources that are available to inform MPA management.

We conducted interviews with MPA managers and scientists from Australian management agencies to document a national perspective of how long-term biological monitoring data are used to inform the evaluation and evidence-based management of Australian MPAs. This research generated a wealth of information is now available in our Journal of Environmental Management paper.

Like terrestrial and marine protected area management agencies around the globe, Australian MPA management agencies commonly use management effectiveness evaluation (MEE) to better understand, learn from and improve conservation efforts. MEE is being used to evaluate management effectiveness of many Australian MPAs, however this process is in its’ infancy with evaluation cycles only having occurred in most cases only a couple of times to date.

The management effectiveness evaluation cycle, designed to enable assessment of the complete management process and facilitate evidence-based management.
The management effectiveness evaluation cycle, designed to enable assessment
of the complete management process and facilitate evidence-based management (adapted from Hockings et al. (2006))

Our research revealed that many long-term biological monitoring programs are used to inform qualitative condition assessments of biological indicators (under the “outcomes” stage of a MEE cycle), where most often published monitoring results are interpreted using expert judgment. That is, available quantitative biological monitoring data are not yet used in any formal quantitative condition assessments for MEE.

We found substantial evidence that long-term monitoring data are informing the evidence-based management of MPAs – contrary to the common criticism that conservation management agencies fail to use scientific evidence to inform management. However, MEE is rarely the only mechanism that facilitates this knowledge transfer to management action.

Our research reveals that in Australian MPAs, the first goal of MEE (to enable environmental accountability and reporting) is being achieved, but the second goal of facilitating evidence-based management is not. “Closing the loop” of MEE to ensure evidence-based management remains a challenge for many management agencies around the globe. We provide recommendations to improve the use of long-term monitoring data in MEE for evidence-based management, such as:

  • Ensuring internal MEE frameworks reflect MEE theory, to determine where breaks in the information chain may be preventing the use of monitoring data in evidence-based management.
  • Implementing quantitative condition assessment of long-term monitoring data to ensure more objective, repeatable and transparent use of monitoring data in MEE.
  • Increase the frequency of evaluation to ensure MEE enables evidence-based management.
  • Invest in targeted long-term monitoring to support outcome assessments.

A model solution for good conservation

Conservation managers often have to make decisions in uncertain and complex situations. One way of dealing with this uncertainty is by modelling the different management alternatives on offer to see what type of results they might yield. The correct use of the appropriate model not only helps in making robust, transparent and defensible conservation decisions, it often generates insights on the nature of system being managed.

There’s no question that when used well, models can deliver good outcomes. But despite their demonstrated benefits, models are often mis-used or not used at all to support conservation decisions. Instead, decisions are frequently based on intuition, personal experience or unaided expert opinion; and this can lead to biased decisions that rest on hidden assumptions and individual agendas.

My colleagues and I recently investigated why models are still not used in many conservation decisions. We found a number of common objections to the use of models in environmental decision-making. In response to these common objections we suggested five practical solutions to help modellers improve the effectiveness and relevance of their work in conservation decision-making.

Our practical solutions include: using a structured decision making (SDM) framework to guide good modeling practice (see Fig 1 for suggested modelling techniques that can be used within a SDM framework); improving the social process of decision-making by including stakeholders, experts and decision-makers in the modelling for decision-making; and, building trust and improving communication between modellers and decision-makers.

Figure 1: A Structured Decision Making/Adaptive Management framework with modelling techniques that can assist the decision-making process.
Figure 1: A Structured Decision Making/Adaptive Management framework with modelling techniques that can assist the decision-making process.

Our practical solutions will challenge many modellers as they require skills outside of their core training and experience. However, if the aim is to achieve better conservation outcomes, then it’s definitely worth considering.

You can read more about this research in our Diversity and Distributions paper  or in this Decision Point article.